# Note on Representing a Prime as a Sum of Two Squares 

By John Brillhart


#### Abstract

An improvement is given to the method of Hermite for finding $a$ and $b$ in $p=$ $a^{2}+b^{2}$, where $p$ is a prime $\equiv 1(\bmod 4)$.


In a one-page note, Hermite [1] published the following efficient method for representing a given prime $p \equiv 1(\bmod 4)$ as a sum of squares (see Lehmer [2]):
(i) Find the solution $x_{0}$ of $x^{2} \equiv-1(\bmod p)$, where $0<x_{0}<p / 2$.
(ii) Expand $x_{0} / p$ into a simple continued fraction to the point where the denominators of its convergents $A_{n}^{\prime} / B_{n}^{\prime}$ satisfy the inequality $B_{k+1}^{\prime}<\sqrt{ } p<B_{k+2}^{\prime}$. Then

$$
p=\left(x_{0} B_{k+1}^{\prime}-p A_{k+1}^{\prime}\right)^{2}+\left(B_{k+1}^{\prime}\right)^{2}
$$

This method, which was the best method known for computing $a$ and $b$ (see Shanks [5]), appeared simultaneously with a paper of Serret [4] on the same subject. Hermite's method, however, is superior, in that it contains a criterion for ending the algorithm at the right place, while Serret's does not.

It is the purpose of this note to point out that the calculation of the convergents in (ii) can be dispensed with, since the values needed for the representation are already at hand in the continued fraction expansion itself. Thus, the shortened algorithm is:
(i) The same.
(ii) Carry out the Euclidean algorithm on $p / x_{0}$ (not $x_{0} / p$ ), producing the sequence of remainders $R_{1}, R_{2}, \cdots$, to the point where $R_{k}$ is first less than $\sqrt{ } p$. Then

$$
\begin{aligned}
& p=R_{k}^{2}+R_{k+1}^{2}, \quad \text { if } \quad R_{1}>1, \\
& =x_{0}^{2}+1, \quad \text { if } \quad R_{1}=1 .
\end{aligned}
$$

Proof. Assume $R_{1}>1$. Since $0<x_{0}<p / 2$ and $p \mid\left(x_{0}^{2}+1\right)$, then, from Perron [3], the following properties hold:
(1) The continued fraction expansion of $p / x_{0}$ has an even number of partial quotients and is palindromic, i.e.,

$$
p / x_{0}=\left[q_{0}, q_{1}, \cdots, q_{k}, q_{k}, \cdots, q_{1}, q_{0}\right]=A_{2 k+1} / B_{2 k+1},
$$

$k \geqq 0$. (Observe that the convergents $A_{n+1}^{\prime} / B_{n+1}^{\prime}$ for the expansion of $x_{0} / p$ are the reciprocals of the convergents $A_{n} / B_{n}$ for $p / x_{0}$.)
(2) $A_{2 k+1}=p$ and $A_{2 k}=x_{0}$.
(3) $p=A_{k}^{2}+A_{k-1}^{2}$.
(4) From (2), the recursion formula for the numerators $A_{n}$ gives the following set of equations:

$$
p=q_{0} x_{0}+A_{2 k-1}, \quad x_{0}=q_{1} A_{2 k-1}+A_{2 k-2}, \cdots
$$

The equations in (4) are clearly identical with those in the Euclidean algorithm for $p / x_{0}$. Hence, $A_{2 k-1}=R_{1}, A_{2 k-2}=R_{2}, \cdots, A_{k+1}=R_{k-1}, A_{k}=R_{k}, A_{k-1}=R_{k+1}$, $\cdots$. Using these equations with (3), gives $p=R_{k}^{2}+R_{k+1}^{2}$. Certainly, then, $R_{k}<\sqrt{ } p$. If $k=1$, then $R_{k}$ is the first $R_{k}<\sqrt{ } p$. If $k>1$, then from the observation in (1), $R_{k-1}=A_{k+1}=B_{k+2}^{\prime}$. But, from Hermite's development, $B_{k+2}^{\prime}>\sqrt{ } p$, so $R_{k}$ is the first remainder less than $\sqrt{ } p$.

If $R_{1}=1$, then $p=q_{0} x_{0}+1$ and $p / x_{0}=\left[q_{0}, q_{0}\right]$. Together, these imply $q_{0}=x_{0}$, so $p=x_{0}^{2}+1$. Q.E.D.

Remark. The solution $x_{0}$ of $x^{2} \equiv-1(\bmod p)$ can be obtained by computing $x_{0} \equiv c^{(p-1) / 4}(\bmod p)$, where $c$ is a quadratic nonresidue of $p$. (Observe that $c=2$ and $c=3$ can be used when $p \equiv 5(\bmod 8)$ and $p \equiv 17(\bmod 24)$, respectively. In the remaining case, $p \equiv 1(\bmod 24), c$ can be found by using the quadratic reciprocity law.)

Example. Let $p=10006721 \equiv 17(\bmod 24)$. Then $c=3$ and $x_{0} \equiv 3^{2501680} \equiv$ $2555926(\bmod p)$. Then

$$
\begin{aligned}
& 10006721=3 \cdot 2555926+2338943 \\
& 2555926=1 \cdot 2338943+216983 \\
& 2338943=10 \cdot 216983+169113 \\
& 216983=1 \cdot 169113+47870 \\
& 169113=3 \cdot 47870+25503 \\
& 47870=1 \cdot 25503+22367 \\
&---------13
\end{aligned}
$$

Hence, since $22367^{2}>p$ and $3136^{2}<p$,

$$
p=3136^{2}+415^{2} .
$$

Remark. Some primes of special form can be expressed as a sum of two squares without much calculation. For example, the number $N=\left(2^{691}-2^{346}+1\right) / 5$ has recently been shown to be prime by the author and J. L. Selfridge. Hence, we can write $N=\left[\left(3 \cdot 2^{345}-1\right) / 5\right]^{2}+\left[\left(2^{345}-2\right) / 5\right]^{2}$. Also, the identity $U_{2 k+1}=U_{k}^{2}+U_{k+1}^{2}$, where $U_{n}$ is the $n$th Fibonacci number, provides such a representation for Fibonacci primes in terms of the Fibonacci numbers themselves.

1. C. Hermite, "Note au sujet de l'article précédent," J. Math. Pures Appl., v. 1848, p. 15; also: "Note sur un théorème rélatif aux nombres entières," Oevres. Vol. 1, p. 264.
2. D. H. Lehmer, "Computer technology applied to the theory of numbers," Studies in Number Theory, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1969, pp. 117-151. MR 40 \#84.
3. O. Perron, Die Lehre von den Kettenbrüchen, 2nd ed., Chelsea, New York, 1950, pp. 32-34. MR 12, 254.
4. J. A. Serret, "Sur un théorème rélatif aux nombres entières," J. Math. Pures Appl., v. 1848, pp. 12-14.
5. D. Shanks, Review of "A table of Gaussian primes," by L. G. Diehl and J. H. Jordan, Math. Comp., v. 21, 1967, pp. 260-262.
